On Tractable Approximations of Randomly Perturbed Convex Constraints
نویسنده
چکیده
We consider a chance constraint Prob{ξ : A(x, ξ) ∈ K} ≥ 1 − 2 (x is the decision vector, ξ is a random perturbation, K is a closed convex cone, and A(·, ·) is bilinear). While important for many applications in Optimization and Control, chance constraints typically are “computationally intractable”, which makes it necessary to look for their tractable approximations. We present these approximations for the cases when the underlying conic constraint A(x, ξ) ∈ K is (a) scalar inequality, or (b) conic quadratic inequality, or (c) linear matrix inequality, and discuss the level of conservativeness of the approximations.
منابع مشابه
On safe tractable approximations of chance constraints
A natural way to handle optimization problem with data affected by stochastic uncertainty is to pass to a chance constrained version of the problem, where candidate solutions should satisfy the randomly perturbed constraints with probability at least 1− . While being attractive from modeling viewpoint, chance constrained problems “as they are” are, in general, computationally intractable. In th...
متن کاملConvex Approximations of Chance Constrained Programs
We consider a chance constrained problem, where one seeks to minimize a convex objective over solutions satisfying, with a given close to one probability, a system of randomly perturbed convex constraints. Our goal is to build a computationally tractable approximation of this (typically intractable) problem, i.e., an explicitly given deterministic optimization program with the feasible set cont...
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملLinear Matrix Inequalities with Stochastically Dependent Perturbations and Applications to Chance-Constrained Semidefinite Optimization
The wide applicability of chance–constrained programming, together with advances in convex optimization and probability theory, has created a surge of interest in finding efficient methods for processing chance constraints in recent years. One of the successes is the development of so–called safe tractable approximations of chance–constrained programs, where a chance constraint is replaced by a...
متن کاملOn Safe Tractable Approximations of Chance-Constrained Linear Matrix Inequalities
In the paper we consider the chance-constrained version of an affinely perturbed linear matrix inequality (LMI) constraint, assuming the primitive perturbations to be independent with light-tail distributions (e.g., bounded or Gaussian). Constraints of this type, playing a central role in chance-constrained linear/conic quadratic/semidefinite programming, are typically computationally intractab...
متن کامل